If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+56X=177
We move all terms to the left:
X^2+56X-(177)=0
a = 1; b = 56; c = -177;
Δ = b2-4ac
Δ = 562-4·1·(-177)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-62}{2*1}=\frac{-118}{2} =-59 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+62}{2*1}=\frac{6}{2} =3 $
| 5(x+3=3(x+9) | | 10n+6=-4n-12 | | 0.6x+18=36 | | 6c-6=24 | | 15=-6x-7-5x | | -9+n/15=-8 | | (3x+7)/20=6x-1 | | ⅓x+2=7x | | 7n=-36-2n | | 25=p+13 | | -1/2(x-7)=10 | | 11+53=x | | 4-9n=n-6 | | 96-4.5y-3.2y=5.6y=42.80. | | 6=n/8+5 | | (2x-1)/7=3/7 | | 1.5x+6-3.4=11.6 | | 12n-3=15n-21 | | -4(8a+12)+7(a+4)=0 | | 3x+31=88 | | 2x-4+1=19 | | y/5.25=1.4 | | b+7b=12-14 | | 60=12x. | | 14u+1=6u+9 | | 5x/x-5=9 | | 3x7=10x+35 | | 3x^2-18x+67=0 | | 7k-8k+3=-8 | | 3(h-4)=75 | | a=500(1.05)8 | | 182=-5+11m |